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dvanced internal combustion engine technologies have afforded
n increase in the number of controllable variables and the ability
o optimize engine operation. Values for these variables are deter-
ined during engine calibration by means of a tabular static cor-

elation between the controllable variables and the corresponding
teady-state engine operating points to achieve desirable engine
erformance, for example, in fuel economy, pollutant emissions,
nd engine acceleration. In engine use, table values are interpo-
ated to match actual operating points. State-of-the-art calibration
ethods cannot guarantee continuously the optimal engine opera-

ion for the entire operating domain, especially in transient cases
ncountered in the driving styles of different drivers. This article
resents brief theory and algorithmic implementation that make
he engine an autonomous intelligent system capable of learning
he required values of controllable variables in real time while
perating a vehicle. The engine controller progressively perceives
he driver’s driving style and eventually learns to operate in a
anner that optimizes specified performance criteria. A gasoline

ngine model, which learns to optimize fuel economy with respect
o spark ignition timing, demonstrates the approach.
DOI: 10.1115/1.4000819�

Introduction
Increasing demand for improving fuel economy and reducing

missions without sacrificing performance have induced signifi-
ant research and investment in advanced internal combustion en-
ine technologies. These technologies, such as fuel injection sys-
ems, variable geometry turbocharging, variable valve actuation,
nd exhaust gas recirculation, have introduced a number of engine
ariables that can be controlled to optimize engine operation. In
articular, computing the optimal values of these variables, re-
erred to as engine calibration, has been shown to be especially
ritical for achieving high engine performance and fuel economy
hile meeting emission standards. Consequently, engine calibra-

ion is defined as a procedure that optimizes one or more engine
erformance criteria, e.g., fuel economy, emissions, or engine ac-
eleration with respect to the engine controllable variables.

State-of-the-art engine calibration methods generate a static
orrelation between the values of the controllable variables and
he corresponding steady-state operating points �1�. This correla-
ion is incorporated into the electronic control unit �ECU� of the
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engine to control engine operation. Design of experiments �DoE�
has been widely used as the baseline method for engine calibra-
tion. The main objective of DoE is to expedite dynamometer tests
significantly using a smaller subset of tests. This subset is utilized
either in implementing engine calibration experimentally or in de-
veloping mathematical models for evaluating engine output. Us-
ing these models, optimization methods can determine the static
correlations between steady-state operating points and the control-
lable engine variables. Rask et al. �2� developed a simulation-
based calibration method to generate rapidly optimized correla-
tions for a V6 engine equipped with two-step variable valve
actuation and intake cam phasing. Guerrier et al. �3� employed
DoE and advanced statistical modeling to develop empirical mod-
els to enhance the powertrain control module calibration tables.
Stuhler et al. �4� implemented an automated calibration environ-
ment using an online DoE to decrease calibration cost.

Calibration becomes more difficult for transient engine opera-
tion. Correlations of optimal values for controllable variables as-
sociated with transient operating points cannot be quantified ex-
plicitly; to prespecify the entire transient engine operation is
impractical. Research efforts in addressing transient operation
have focused on simulation-based methods to derive calibration
maps for transients of particular driving cycles. Burk et al. �5�
presented the necessary procedures required to utilize cosimula-
tion techniques with regard to predicting engine drive cycle per-
formance for a typical vehicle. Jacquelin et al. �6� utilized analyti-
cal tools to run the FTP-75 driving cycle through precomputed
engine performance maps, depending on engine speed, load, in-
take, and exhaust cam centerline positions. Atkinson et al. �7�
implemented a dynamic system to provide optimal calibration for
transient engine operation of particular driving cycles. These
methods utilize engine models sufficiently accurate to portray fuel
economy and feed-gas emissions during transient engine opera-
tion. However, identifying all possible transients, and thus deriv-
ing optimal values of the controllable variables through calibra-
tion maps for those cases a priori, remains very difficult.
Alternative approaches involves use of artificial neural networks
�ANNs� �8–13� to evaluate engine performance criteria with re-
spect to controllable variables. ANNs are computationally effi-
cient for optimization; however, the above difficulties related to
transient operating points remain.

This article presents the theoretical framework and a control
algorithm that makes the engine an autonomous intelligent system
that can learn its optimal calibration in real time while the driver
drives a vehicle. The engine is treated as a controlled stochastic
system, and engine calibration is formulated as a sequential
decision-making problem under uncertainty. While the engine is
running the vehicle, it progressively perceives the driver’s driving
style and eventually learns to operate in a manner that optimizes
specified performance criteria, e.g., fuel economy, emissions, or
engine acceleration. Optimal calibration is achieved for steady-
state and transient engine operating points resulting from the driv-
er’s driving style. The engine’s ability to learn its optimum cali-
bration is not limited to a particular driving style. The engine can
learn to operate optimally for different drivers if they indicate
their identity before starting the vehicle. The engine can then ad-
just its operation to be optimal for a particular driver based on
what it has learned in the past regarding his/her driving style.

The remainder of the article proceeds as follows: Sec. 2 pre-
sents the theoretical framework of modeling engine operation as a
controlled Markov decision process and formulates engine cali-
bration as a sequential decision-making problem under uncer-
tainty; the control algorithm that solves the decision-making prob-
lem in real time is also introduced. The effectiveness of the
approach is demonstrated on a gasoline engine model in Sec. 3,
while the engine is running the vehicle, it learns to optimize fuel
economy with respect to spark ignition timing. Conclusions are

presented in Sec. 4.
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Proposed Method
Engines are streamlined syntheses of complex physical pro-

esses determining a convoluted dynamic system. They are oper-
ted with reference to engine operating points and the values of
arious engine controllable variables. At each operating point,
hese values highly influence engine performance criteria, e.g.,
uel economy, emissions, or acceleration. This influence becomes
ore important at engine operating point transitions designated

artly by the driver’s driving style and partly by the engine con-
rollable variables. Consequently, the engine is a system whose
ehavior is not completely foreseeable, and its future evolution
operating point transitions� depends on the driver’s driving style.

Transient operation constitutes the largest segment of engine
peration over a driving cycle compared with the steady-state one
14,15�. Emissions during transient operation are extremely com-
licated �15�, vary significantly with each particular driving cycle
16,17�, and are highly dependent on the calibration �17,18�. En-
ine operating points, during the transient period before their
teady-state value is reached, are associated with different brake-
pecific fuel consumption �BSFC� values, depending on the direc-
ions from which they have been arrived, as illustrated qualita-
ively in Figs. 1 and 2. Pollutant emissions, such as NOx, and
articulate matters demonstrate the same qualitative behavior, as
hown by Hagena et al. �19�. Consequently, the optimal values of
he controllable variables corresponding to steady-state operating
oints cannot capture efficiently the transient engine operation.

ig. 1 Two trajectories, A and B, of engine operating points
nding at the same operating point

ig. 2 BSFC value of the terminal engine operating point as

eached from trajectories A and B

24504-2 / Vol. 132, MARCH 2010
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Engine operation is described in terms of its operating points,
and the evaluation of performance indices is a function of various
controllable variables. Here, the engine performance indices are
treated as random functions, the engine is treated as a controlled
stochastic system, and the engine operation is treated as a stochas-
tic process. Engine calibration is thus reformulated as a sequential
decision-making problem under uncertainty. The goal is to select
values of the controllable variables for each engine operating
point in real time that optimize the random functions �engine per-
formance indices�. The Markov decision process �MDP� provides
the mathematical framework for modeling sequential decision-
making problems under uncertainty �20�; it comprises �a� a deci-
sion maker �controller�, �b� states �engine operating points�, �c�
control actions �engine controllable variables�, �d� a transition
probability matrix �driver�, �e� a transition cost �or reward� matrix
�engine performance criteria�, and �f� an optimization criterion
�e.g., maximizing fuel economy, minimizing pollutant emissions,
and maximizing engine acceleration�. A discrete-time, stochastic
controlled MDP is defined as the tuple

�S,A,P�· , ·�,R�· , ·�� �1�

where S= �1,2 , . . . ,N�, N�N, denotes a finite state space, A
=�sk�SA�sk� stands for a finite action space, P�· , ·� is the transi-
tion probability matrix, and R�· , ·� is the transition cost matrix.
The decision-making process occurs at each of a sequence of de-
cision epochs k=0,1 ,2 , . . . ,M, M �N. At each epoch, the
decision-maker observes a system’s state sk= i�S and executes an
action ak, from the feasible set of actions A�sk��A at this state.
At the next epoch, the system transits to the state sk+1= j�S im-
posed by the conditional probabilities p�sk+1= j �sk= i ,ak�, desig-
nated by the transition probability matrix P�· , ·�. These conditional
probabilities of P�· , ·�, p :S�A→ �0,1�, satisfy the constraint

�
j=1

N

p�sk+1 = j�sk = i,ak� = 1 �2�

Following this state transition, the decision maker receives a cost
associated with the action ak, R�sk+1= j �sk= i ,ak� ,R :S�A→R,
as imposed by the transition cost matrix R�· , ·�.

The states of a MDP possess the Markov property, stating that
the conditional probability distribution of future states of the pro-
cess, given the present state and all past states, depends only on
the current state and not on any past states; i.e., it is conditionally
independent of the past states �the path of the process� given the
present state. Mathematically, the Markov property requires that

p�sk+1�sk,sk−1, . . . ,s0� = p�sk+1�sk� �3�

2.1 The Cost of a Markov Control Policy. The solution to a
MDP can be expressed as an admissible control policy so that a
given performance criterion is optimized over all admissible poli-
cies �. An admissible policy consists of a sequence of functions

� = ��0,�1, . . . ,�M−1� �4�

where �k maps states sk into actions ak=��sk� and is such that
�k�sk��A�sk� , ∀sk�S. A Markov policy � determines the prob-
ability distribution of state process �sk ,k�0� and the control pro-
cess �ak ,k�0�. Different policies will lead to different probability
distributions. In optimal control problems, the objective is to de-
rive the optimal control policy that minimizes �maximizes� the
accumulated cost �reward� incurred at each state transition per
decision epoch. If a policy � is fixed, the cost incurred by � when
the process starts from an initial state s0 and up to the time hori-

zon M is
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J��s0� = E
sk�S

ak�A�sk�

	�
k=0

M−1

Rk�sk+1 = j�sk = i,ak�sk��

= E

sk�S
�k�A�sk�

	�
k=0

M−1

Rk�sk+1 = j�sk = i,�k�sk��

= �

k=0

M−1

p�sk+1 = j�sk = i,�k�sk�� · R�sk+1 = j�sk = i,�k�sk��

�5�

here the expectation is taken with respect to the probability dis-
ribution of �sk ,k�0� and �ak ,k�0� determined by the Markov
olicy �. The optimal policy ��= ��0

� ,�1
� , . . . ,�M

� � can be derived
y

�� = arg min
���

J��s0� �6�

large class of sequential decision-making problems under un-
ertainty can be solved using classical dynamic programming,
riginally proposed by Bellman �21�. Algorithms, such as value
teration, policy iteration, and linear programming, are employed
o find optimal solution of MDPs. However, the computational
ost of these algorithms in some occasions may be prohibitive and
an grow intractably as the size of the problem increases. In ad-
ition, dynamic programming algorithms require the realization of
he transition probability matrix, P�· , ·�, and transition cost matrix,
�· , ·�. For complex systems like engines, these matrices can be

mpractical or impossible to be available offline. Besides, these
atrices are designated by the driver’s driving style and, thus,

eed to be computed in real time for any different driver.

2.2 Online Identification and Stochastic Control. The sto-
hastic formulation of the engine calibration problem involves
wo major subproblems: �a� the engine identification problem and
b� the stochastic control problem. The first is exploitation of the
nformation acquired from the engine output to identify its behav-
or; that is, how an engine representation can be built by observing
ngine operating point transitions and associated costs designated
y the driver’s driving style, i.e., the transition probability matrix
�· , ·� and the transition cost matrix R�· , ·�. The second forms the
tochastic control subproblem, that is, assessment of the engine
utput with respect to alternative control policies, and selecting
hose that optimize specified engine performance criteria, e.g.,
uel economy, emissions, or engine acceleration, that is, solving
q. �6�.
In our approach, a self-learning controller �decision maker� is

aced with the problem of influencing engine operation as it
volves over time by selecting values of the controllable variables.
he goal of the controller is to learn the sequences of engine
perating point transitions corresponding to the driver’s driving
tyle and select the control policy �values of the controllable vari-
bles� that cause the engine to perform optimally with respect to
ome predetermined performance criterion �cost function�. A key
spect of the stochastic control problem is that decisions are not
iewed in isolation. Consequently, the self-learning controller
hould select those values that balance the desire to minimize the
ost function of the next engine operating transition against the
esire to avoid future operating point transitions where high cost
s inevitable. To this end, the predictive optimal decision-making
POD� computational learning model �22� is employed. The
odel embedded in the self-learning controller aims to address

he state estimation and system identification problem for a com-
letely unknown system by learning in real time the system dy-
amics over a varying and unknown finite time horizon. It is
onstituted by a state representation, which provides an efficient

rocess in realizing the state transitions that occurred in the Mar-
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kov domain. The convergence of POD to the stationary distribu-
tion of the Markov chain was proven in Ref. �23�, hence, estab-
lishing POD as a robust model toward making autonomous
intelligent systems that can learn to improve their performance
over time in stochastic environments. While the driver drives the
vehicle, the model progressively perceives the driver’s driving
style by means of the transition probability matrix, P�· , ·�. In ad-
dition, the model captures specified engine performance criteria,
e.g., fuel economy, pollutant emissions, and engine performance,
by means of the elements of the transition cost matrix, R�· , ·�.

The learning process of the controller, illustrated in Fig. 3, tran-
spires while the engine is running the vehicle and interacting with
the driver. Taken in conjunction with assigning values of the con-
trollable variables from the feasible action space, A, this interac-
tion portrays the progressive enhancement of the controller’s
“knowledge” of the driver’s driving style with respect to the con-
trollable variables. More precisely, at each of a sequence of deci-
sion epochs k=0,1 ,2 , . . .M, the driver introduces a state sk�S to
the controller, and on that basis the controller selects an action,
ak=��sk�. This state arises as a result of the driver’s driving style
corresponding to particular engine operating points. One epoch
later, as a consequence of this action, the engine transits to a new
state sk+1= j�S and receives a numerical cost, Rk�sk+1= j �sk

= i ,ak��R.
At each epoch, the controller implements a mapping from the

Cartesian product of the state space and action space to the set of
real numbers, S�A→R, by means of the costs that it receives,
i.e., the transition cost matrix, R�· , ·�. Similarly, another mapping
from the Cartesian product of the state space and action space to
the closed set �0,1� is executed, S�A→ �0,1�, i.e., the transition
probability matrix, P�· , ·�. The latter essentially perceives the in-
cidence in which particular states or particular sequences of states
arise. The implementation of these two mappings aims the con-
troller to derive the control policy designated by the stochastic
control algorithm. This policy is expressed by means of a mapping
from states to probabilities of selecting the actions, resulting in the
minimum expected accumulated cost.

The objective of the control algorithm is to evaluate in real time
the action at each epoch that is optimal not only for the current
state but also for the next two subsequent states over the following
epochs. The requirement of real-time implementation imposes a
computational burden in allowing the algorithm to look further
ahead of time and, thus, evaluating an action over additional suc-
ceeding states. Suppose that the current state is sk and the follow-
ing state given an action ak�A�sk�, is sk+1. The immediate cost
incurred by this transition is R�sk+1 �sk ,ak�. The minimum ex-
pected cost for the next two subsequent states is perceived in
terms of the magnitude, V�sk+1�, and is equal to

V�sk+1� = min
ak+1�A�sk+1�

E
sk+2�S

�R�sk+2�sk+1,ak+1�� �7�

All uncertain quantities are described by probability distributions
and the expected value of the overall cost is minimized. The con-

¯

Fig. 3 The learning process during the interaction between
the engine and the driver
trol policy � realized by the algorithm is based on the minimax
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Downloa
ontrol approach, whereby the worst possible values of the uncer-
ain quantities within the given set are assumed to occur. This
ssentially assures that the control policy will result in at most a
aximum overall cost. At state sk, the control algorithm provides

he policy �̄= ��̄0 , �̄1 , . . . , �̄M−1�, in terms of the values of the
ontrollable variables as

�̄�sk� = arg min
�̄k�sk��A�sk�

max
sk+1�S

�R�sk+1�sk,ak� + V�sk+1�� �8�

Application: Gasoline Engine Calibration With Re-
pect to Spark Ignition Timing

In gasoline engines, the fuel and air mixture is prepared before
t is ignited by the spark discharge. The major objectives for the
park ignition are to initiate a stable combustion and to ignite the
ir-fuel mixture at the crank angle resulting in maximum effi-
iency, while fulfilling emissions standards and preventing the
ngine from knocking. Simultaneous achievement of the afore-
entioned objectives is sometimes inconsistent; for instance, at

igh engine loads, the ignition timing for maximum efficiency has
o be abandoned in favor of prevention of engine destruction by
ay of engine knock. Two key parameters are controlled with the

park ignition: ignition energy and ignition timing. Control of ig-
ition energy is important for assuring combustion initiation, but
he focus here is on the spark timing that maximizes engine effi-
iency. Ignition timing influences nearly all engine outputs and is
ssential for efficiency, drivability, and emissions. The optimum
park ignition timing generating the maximum engine brake
orque is defined as maximum brake torque �MBT� timing. Any
gnition timing that deviates from MBT lowers the engine’s output
orque, as illustrated in Fig. 4. The BSFC, defined as the fuel flow
ate per unit power output evaluates how efficiently an engine is
tilizing the fuel supplied to produce work

BSFC�g/kW · h� =
ṁf�g/h�
P�kW�

�9�

here ṁf is the fuel mass flow rate per unit time, and P is the
ngine’s power output. Continuous engine operation at MBT en-
ures optimum fuel economy with respect to the spark ignition
iming.

In an ideal gasoline engine calibration with respect to spark
gnition timing, the engine should operate at the MBT timing for
ach engine operating point. By achieving MBT timing for all
teady-state and transient operating points, an overall improve-
ent of the BSFC is expected. Aspects of preventing knocking are

ot considered in this example; however, they can be easily incor-
orated by defining the spark ignition space to include the maxi-
um allowable values.

ig. 4 Effect of spark ignition timing on the engine brake
orque at constant engine speed
The software package ENDYNA by TESIS �24� suitable for real-

24504-4 / Vol. 132, MARCH 2010
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time simulation of internal combustion engines is employed. The
software utilizes thermodynamic models of the gas path and is
well suited for testing and development of engine electronic con-
trol units. In this example, a four-cylinder gasoline engine is used
from the ENDYNA model database. The electronic control unit of
the engine model including the baseline calibration of spark igni-
tion timing with respect to steady-state engine operating points is
bypassed to incorporate the self-learning controller embedded
with the control algorithm. The model with the baseline engine
calibration incorporates a static map for spark ignition timing
�without considering knocking� corresponding to steady-state op-
erating points.

Before initiating the first simulation, the model with the self-
learning controller has no knowledge regarding the particular tran-
sient engine operation and spark timing associated with it. The
model is run repeatedly over the same driving style represented by
a pedal position rate to represent a situation in which the driver
desires a particular acceleration deemed characteristic of his/her
driving style. The belief implicit here is that if the controller can
successfully capture this profile, then it will also be able to capture
engine realization designated by a driver in long term.

To evaluate the efficiency of our approach in transient engine
operation, the pedal position rate is chosen to represent an aggres-
sive acceleration, as illustrated in Fig. 5. The spark ignition timing
derived by the self-learning controller is shown in Fig. 6 and
compared with the baseline calibration. The ignition timing of the
self-learning controller results in higher engine brake torque com-
pared with the baseline calibration indicating that the engine is
able to operate closer to MBT timing. It should be emphasized

Fig. 5 Gas-pedal position rate representing a driver’s driving
style
Fig. 6 Spark ignition timing over the driving style
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ere that the baseline calibration has been optimized only for fuel
conomy without considering emission regulations. So, the over-
ll improvement of the BSFC, illustrated in Fig. 7, demonstrates
he efficiency of the proposed approach in deriving optimal cali-
ration in terms of spark timing with respect to fuel consumption.
o evaluate the learning efficiency of the controller, the vehicles
ere simulated for three additional acceleration profiles, shown in
ig. 8. In all cases, the controller specified successfully the control
olicy in terms of the spark ignition timing minimizing the BSFC
ompared with the baseline calibration, as illustrated in Figs.
–11.

Concluding Remarks
We presented the theoretical framework and a control algorithm

or making the engine of a vehicle into an autonomous intelligent
ystem that can learn its optimal calibration in real time while the
river is driving the vehicle. The engine was treated as a stochas-
ic system, engine operation was modeled as a controlled Markov
ecision process, and engine calibration was formulated as a se-
uential decision-making problem under uncertainty.

The research presented here contributes to engine calibration
chemes that can capture transient engine operation associated
ith common driving habits, e.g., stop-and-go driving, rapid ac-

eleration, or braking. Each individual driving style is different
nd rarely meets test driving conditions, e.g., calibration over
teady-state operating points or vehicle speed profiles for highway
nd city driving. Although the application presented limited evi-
ence of the efficiency of the proposed approach, the results look
romising.

ig. 7 BSFC comparison between the baseline and self-
earning calibration
Fig. 8 Three different acceleration profiles

ournal of Dynamic Systems, Measurement, and Control
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The proposed approach may significantly reduce the discrep-
ancy between posted gas mileage estimates and actual mileage of
a vehicle �25,26�, while an overall improvement of emissions may
be also expected �27�. Future research should explore the impact
of traffic patterns, and terrain, on the general applicability of hav-
ing the engine learn its optimal calibration for an individual driv-
ing style. Drivability issues that may be raised in implementing
this approach in a real vehicle should also be investigated.

Fig. 9 BSFC comparison between the baseline and self-
learning calibration „acceleration profile A…

Fig. 10 BSFC comparison between the baseline and self-
learning calibration „acceleration profile B…

Fig. 11 BSFC comparison between the baseline and self-

learning calibration „acceleration profile C…
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